

MC-Aufgaben aus der PhysikOlympiade

zusammengestellt von Stefan Petersen www.ipho.info /CC BY 4.0

Diese Sammlung enthält Multiple-Choice Aufgaben aus den ersten beiden Runden der PhysikOlympiade in Deutschland, dem nationalen Auswahlwettbewerb für die Internationale PhysikOlympiade (IPhO). Multiple-Choice Aufgaben werden in der PhysikOlympiade hauptsächlich in der Klausur der zweiten Runden verwendet, in der sieben dieser Aufgaben in etwa 60-90 Minuten beantwortet werden sollen.

Zu jeder Frage gibt es genau eine richtige Antwortalternative. Es ist jeweils physikalisch zu begründen, warum dies die korrekte Lösung ist. Die in dieser Sammlung angegebenen physikalischen Konstanten werden auch in den Klausuren gegeben.

Die Themen der Aufgaben sind quer durch die Physik verteilt. Den fachlichen Rahmen spannt dabei der Stoffkatalog der Internationalen PhysikOlympiade auf. Eine deutsche Übersetzung davon ist unter dem folgenden Link¹ auf der IPhO-Webseite zu finden. Zum Lösen der Aufgaben der PhysikOlympiade in Deutschland ist es aber in der Regel nicht erforderlich, alle Teile des Stoffkataloges vollständig zu beherrschen.

Die Aufgaben und Lösungen werden sicher noch Fehler oder unklare Formulierungen enthalten. Für Hinweise und Verbesserungsvorschläge unter ipho@ipho.info sind wir sehr dankbar.

Das Team der PhysikOlympiade wünscht viel Spaß und Erfolg beim Knobeln.

¹Die URL ist www.scienceolympiaden.de/ipho/internationale-physik-olympiade-wettbewerb/anforderungen

Inhaltsverzeichnis

1	Mechanik					Ę
1.1	Kräftegleichgewichte	 		 	 	 5
Au	fgabe 1 - Sinkender Körper (MC-Aufgabe)	 		 	 	 5
Au	fgabe 2 - Korken im Eimer (MC-Aufgabe)	 		 	 	 . 5
Au	fgabe 3 - Stein im Wasserglas (MC-Aufgabe)	 		 	 	 6
	fgabe 4 - Eiswürfel im Glas (MC-Aufgabe)					
	Kinematik & Dynamik					
	fgabe 5 - Linealverschiebung (MC-Aufgabe)					
	fgabe 6 - Bewegung! (MC-Aufgabe)					
	fgabe 7 - Rutschende Kästen (MC-Aufgabe)					
	fgabe 8 - Wasserstrahl (MC-Aufgabe)					
	fgabe 9 - Puck am Faden (MC-Aufgabe)					
	fgabe 10 - Fall auf Exoplanet (MC-Aufgabe)					
	fgabe 11 - Rotierender Würfel (MC-Aufgabe)					
	Himmelsmechanik					
	fgabe 12 - Erde und Mars (MC-Aufgabe)					
	fgabe 12 - Erde und Mars (MC-Adigabe)					
	Schwingungen & Wellen					
	fgabe 14 - Pendel im Fahrstuhl (MC-Aufgabe)					
	fgabe 15 - Schwingung mit Hindernis (MC-Aufgabe)					
Au	fgabe 16 - Doppeltes Federpendel (MC-Aufgabe)	 	• •	 	 	 14
2	Elektrizitätslehre					15
	Elektrische & magnetische Felder					
	fgabe 17 - Coulombkraft (MC-Aufgabe)					
	fgabe 18 - Koaxialkabel (MC-Aufgabe)					
	fgabe 19 - Felder (MC-Aufgabe)					
	fgabe 19 - Felder (MC-Aufgabe)					
	fgabe 20 - Geladerier Stadb (MC-Aufgabe)					
	fgabe 21 - Magnetfall (MC-Aufgabe)					
	fgabe 23 - Fallende Leiterschleife im Magnetfeld (MC-Aufgabe)					
	Gleischstromkreise					
	fgabe 24 - Fünfeck aus Widerständen (MC-Aufgabe)					
	fgabe 25 - Batteriebetrieb (MC-Aufgabe)					
	fgabe 26 - Diode und Widerstände (MC-Aufgabe)					
	Wechselstromkreise					
	fgabe 27 - Schwingkreise (MC-Aufgabe)					
Au	fgabe 28 - Wechselstromschaltkreis (MC-Aufgabe)	 		 	 	 22
3	Thermodynamik					23
	Temperatur, Wärmekapazität & thermische Ausdehnung					
	fgabe 29 - Heiße Scheibe (MC-Aufgabe)					
	fgabe 30 - Temperatureinheiten (MC-Aufgabe)					
	fgabe 31 - Wärmekapazität (MC-Aufgabe)					
	fgabe 31 - Warmekapazitat (MC-Aufgabe)					
	fgabe 32 - vvasserkocher mit Eiswurfei (MC-Aufgabe)					
	•					
	Wärmetransport					
ΑU	fgabe 34 - Wärmeleitung (MC-Aufgabe)	 		 	 	 20

Aufgabe 35 - Widerstandserwärmung (MC-Aufgabe) Aufgabe 36 - Wärmestrahlung (MC-Aufgabe) Aufgabe 37 - Erderwärmung stoppen (MC-Aufgabe)	 	 	 	 	 		27 27 28
4 Optik							30
4.1 Geometrische Optik	 						30
Aufgabe 40 - Lichtbrechung (MC-Aufgabe)	 						30
Aufgabe 41 - Glasquader (MC-Aufgabe)	 						31
Aufgabe 42 - Sammellinse (MC-Aufgabe)	 						31
Aufgabe 43 - Linsensammlung (MC-Aufgabe)	 						32
Aufgabe 44 - Zwei Bilder (MC-Aufgabe)	 						33
4.2 Wellenoptik & Strahlung	 						34
Aufgabe 45 - Interferenz (MC-Aufgabe)							
Aufgabe 46 - Wasserschichtreflexion (MC-Aufgabe)							
Aufgabe 47 - Zwei Sender (MC-Aufgabe)							
Aufgabe 48 - Bleiglasfenster (MC-Aufgabe)	 				٠	•	35
5 Diverse							36
5.1 Atomphysik & Radioaktivität	 						36
Aufgabe 49 - Spektren (MC-Aufgabe)							
Aufgabe 50 - Radioaktiver Zerfall (MC-Aufgabe)	 						37
5.2 Relativitätstheorie							
Aufgabe 51 - Galaktische Flaschenpost (MC-Aufgabe)	 						37
5.3 Physikalische Dimensionen & Skalierungen	 						38
Aufgabe 52 - Leistung von Windenergieanlagen (MC-Aufgabe) .	 						38
Aufgabe 53 - Leistung von Gravitationswellen (MC-Aufgabe)	 						38
Aufgabe 54 - Gezeitenheizung (MC-Aufgabe)	 						39
Aufgabe 55 - Zwei Platten im Vakuum (MC-Aufgabe)	 		 				39

Naturkonstanten und gebräuchliche Größen

In den Aufgaben können die folgenden physikalischen Größen verwendet werden. Die Angaben können jeweils bis zur angegebenen Stelle als exakt angenommen werden.

Konstante	gebräuchliche Formelzeichen	Wert
Absoluter Nullpunkt	T_0	$0 \text{K} = -273,15 ^{\circ} \text{C}$
Atomare Masseneinheit	и	$1,660539\cdot 10^{-27}\mathrm{kg}$
Avogadro-Konstante	$N_{\mathcal{A}}$	$6,022141\cdot10^{23}\mathrm{mol}^{-1}$
Boltzmann-Konstante	$k_{\scriptscriptstyle m B}$	$1,380649\cdot 10^{-23}\mathrm{JK^{-1}}$
Elektrische Feldkonstante	$arepsilon_0$	$8,854187817\cdot 10^{-12}\mathrm{AsV^{-1}m^{-1}}$
Elektronenvolt	eV	$1\mathrm{eV} = 1,602177\cdot 10^{-19}\mathrm{J}$
Elementarladung	e	$1,602177\cdot 10^{-19}\mathrm{A}\mathrm{s}$
Fallbeschleunigung auf der Erde	g	$9,80665\mathrm{ms^{-2}}$
Gravitationskonstante	γ , G	$6,674\cdot 10^{-11}\mathrm{m^3kg^{-1}s^{-2}}$
Lichtgeschwindigkeit im Vakuum	<i>c</i> ₀	$2,99792458\cdot 10^8\mathrm{ms^{-1}}$
Magnetische Feldkonstante	μ_0	$1,\!256637061\cdot 10^{-6}\mathrm{V}\mathrm{s}\mathrm{A}^{-1}\mathrm{m}^{-1}$
Normdruck, Atmosphärendruck	p_n	$101325\mathrm{N}\mathrm{m}^{-2}$
Plancksches Wirkungsquantum	h	$6,626070\cdot10^{-34}\mathrm{J}\mathrm{s}$
Ruhemasse des Elektrons	$m_{ m e}$	$9{,}109384\cdot10^{-31}\mathrm{kg}$
Ruhemasse des Neutrons	m_{n}	$1,674927\cdot 10^{-27}\mathrm{kg}$
Ruhemasse des Protons	$m_{\scriptscriptstyle m p}$	$1,672622\cdot 10^{-27}\mathrm{kg}$
Rydberg-Konstante	R_{∞}	$1{,}097373157\cdot 10^7\mathrm{m}^{-1}$
Schallgeschwindigkeit in Luft	C_{Luft}	$343\mathrm{ms^{-1}}$ (bei 20 °C und Normdruck)
Stefan-Boltzmann-Konstante	α , σ	$5,6704 \cdot 10^{-8} \text{W m}^{-2} \text{K}^{-4}$
Universelle Gaskonstante	R	$8,31446\mathrm{JK^{-1}mol^{-1}}$

1 Mechanik

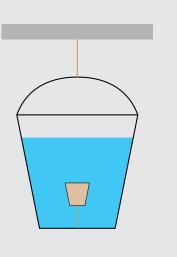
1.1 Kräftegleichgewichte

Aufgabe 1 - Sinkender Körper (MC-Aufgabe)

(2. Rd. zur IPhO 2023, Aufgabengruppe der PhysikOlympiade - Stefan Petersen)

Wenn ein fester Körper mit der Dichte $1,80\,\mathrm{g\,cm^{-3}}$ in zähem Öl der Dichte $0,90\,\mathrm{g\,cm^{-3}}$ mit konstanter Geschwindigkeit sinkt, so . . .

- A ... wirkt auf den Körper keine Gewichtskraft.
- B ...ist die Masse des Körpers gleich der Masse der verdrängten Flüssigkeit.
- C ...ist die Gewichtskraft des Körpers im Gleichgewicht mit der Reibungskraft.
- D ...ist die Auftriebskraft auf den Körper gleich der Reibungskraft.

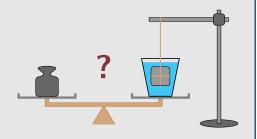

Aufgabe 2 - Korken im Eimer (MC-Aufgabe)

(2. Rd. zur IPhO 2019)

Ein mit Wasser gefüllter Eimer ist an einem Seil aufgehängt. In dem Eimer befindet sich, wie nebenstehend abgebildet, ein Korken, der mit einem Faden am Boden des Eimers befestigt ist. Wenn der Faden durchtrennt wird, steigt der Korken an die Wasseroberfläche. Wird das Seil am Eimer durchtrennt, fällt dieser mit Inhalt nach unten.

Wie bewegt sich der Korken relativ zu dem Eimer, unmittelbar nachdem das Seil und der Faden gleichzeitig durchtrennt worden sind?

- A Der Korken steigt schneller zur Wasseroberfläche.
- B Der Korken steigt genau so schnell an die Wasseroberfläche.
- C Der Korken bleibt in Ruhe.
- D Der Korken sinkt zum Boden des Eimers.



Aufgabe 3 - Stein im Wasserglas (MC-Aufgabe)

(2. Rd. zur IPhO 2022, Aufgabengruppe der PhysikOlympiade, Bernd Schade)

Auf einer Waage steht ein mit Wasser einer Dichte von $1000\,\mathrm{kg}\,\mathrm{m}^{-3}$ gefülltes Glas. Durch Auflegen eines Massestückes wird die Waage ins Gleichgewicht gebracht.

Nun wird, wie in der Abbildung gezeigt, ein Stein mit einem Volumen von $300\,\mathrm{cm^3}$ und einer Dichte von $3000\,\mathrm{kg}\,\mathrm{m^{-3}}$ an einem dünnen Faden an einem Stativ hängend in das Wasser eingetaucht, ohne den Boden zu berühren.

Welche der folgenden Aussagen ist korrekt?

Um die Waage ins Gleichgewicht zu bringen, muss . . .

- A ... nichts unternommen werden, da die Waage im Gleichgewicht bleibt.
- B ...ein Massestück einer Masse von 0,3 kg auf die linke Seite der Waage gelegt werden.
- C ... ein Massestück einer Masse von 0,6 kg auf die linke Seite der Waage gelegt werden.
- D ... ein Massestück einer Masse von 0,9 kg auf die linke Seite der Waage gelegt werden.

Aufgabe 4 - Eiswürfel im Glas (MC-Aufgabe)

(2. Rd. zur IPhO 2020, Aufgabengruppe der PhysikOlympiade - Eugen Dizer)

In drei mit Wasser gefüllten Gläsern schwimmt jeweils ein Eiswürfel. Der Eiswürfel in Glas 1 hat eine Luftblase im Inneren, der Eiswürfel in Glas 2 besitzt einen Kern aus flüssigem Wasser und in Glas 3 schwimmt ein Eiswürfel mit einem Aluminiumkern.

Was lässt sich über die Wasserspiegel in den Gläsern direkt nach dem Schmelzen der Eiswürfel sagen?

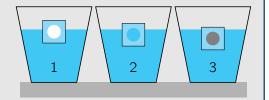
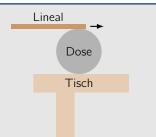


Abb. 1. Nicht maßstabsgerechte Skizze der schwimmenden Eiswürfel mit Einschlüssen.

- A Der Wasserspiegel in Glas 1 ist gestiegen, die in den anderen Gläsern sind unverändert.
- B Der Wasserspiegel in Glas 3 ist gesunken, die in den anderen Gläsern sind unverändert.
- C Die Wasserspiegel in Glas 1 und 3 sind gestiegen, der in Glas 2 ist unverändert.
- D Die Wasserspiegel in allen Gläsern sind unverändert.



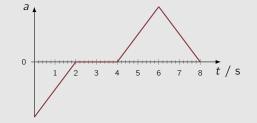
1.2 Kinematik & Dynamik

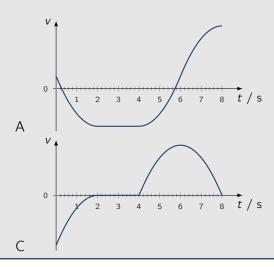
Aufgabe 5 - Linealverschiebung (MC-Aufgabe)

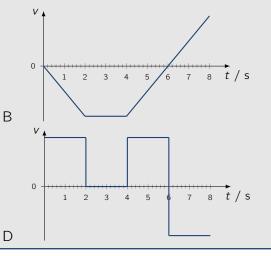
(1. Rd. zur IPhO 2020)

Das Ende eines Lineals liegt auf einer zylindrischen Dose, die wiederum auf einem Tisch liegt. Das Lineal wird horizontal bewegt, so dass die Dose über den Tisch rollt. Dabei rutschen weder das Lineal noch die Dose.

Um welche Strecke hat sich das Lineal relativ zum Tisch bewegt, wenn die Dose eine volle Drehung vollführt hat?


- A Die Hälfte des Umfangs der Dose
- B Den Umfang der Dose
- C Das Doppelte des Umfangs der Dose
- D Mehr als das Doppelte des Umfangs der Dose


Aufgabe 6 - Bewegung! (MC-Aufgabe)


(2. Rd. zur IPhO 2019, Aufgabengruppe der PhysikOlympiade - Stefan Petersen)

Der nebenstehende Graph zeigt die Beschleunigung *a* eines Körpers bei einer eindimensionalen Bewegung als Funktion der Zeit *t*.

Welche der nachfolgenden Graphen stellt die Geschwindigkeit v des Körpers als Funktion der Zeit korrekt dar?

Aufgabe 7 - Rutschende Kästen (MC-Aufgabe)

(1. Rd. zur IPhO 2017)

Zwei Kästen rutschen reibungsfrei aus gleicher Höhe jeweils eine schiefe Ebene hinab. Die beiden schiefen Ebenen besitzen unterschiedliche Steigungen, beide Kästen legen aber insgesamt den gleichen Höhenunterschied zurück. Der eine Kasten ist doppelt so schwer wie der andere.

Welche der folgenden Aussagen trifft zu?

- A Beide Kästen haben anfänglich die gleiche potentielle Energie.
- B Die Kästen benötigen die gleiche Zeit für das Rutschen auf den schiefen Ebenen.
- C Am Ende der schiefen Ebenen besitzen beide Kästen die gleiche kinetische Energie.
- D Am Ende der schiefen Ebenen sind beide Kästen gleich schnell.

Aufgabe 8 - Wasserstrahl (MC-Aufgabe)

(2. Rd. zur IPhO 2024, Aufgabengruppe der PhysikOlympiade - Stefan Petersen)

Die Unterseite eines mit Wasser gefüllten Behälters befindet sich, wie nebenstehend gezeigt, auf einer Höhe von $H_{\rm unten}=15\,{\rm cm}$ über dem Boden. Die Wasserhöhe im Behälter beträgt $H=50\,{\rm cm}$.

In den Behälter wird nun auf einer Höhe h über der Unterseite ein kleines Loch gebohrt, so dass sich ein Wasserstrahl aus dem Behälter ergießt, der anfänglich in einer Entfernung x auf den Boden trifft.

Welcher der Graphen gibt die Entfernung x des Auftreffpunktes in Abhängigkeit von der Höhe h, in der das Loch gebohrt wird, korrekt wieder?

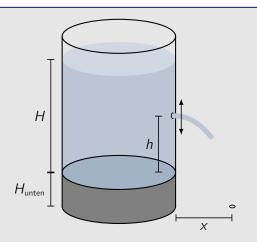
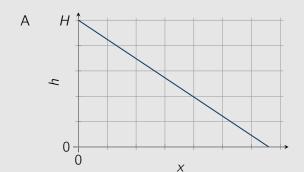
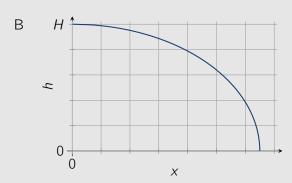
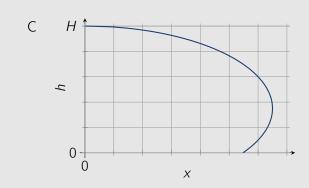
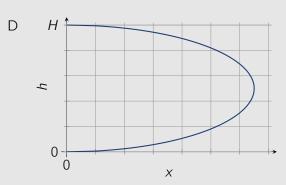






Abb. 2. Skizze zum Wasserstrahl.

Aufgabe 9 - Puck am Faden (MC-Aufgabe)

(1. Rd. zur IPhO 2020)

Ein sehr kleiner Puck kann sich reibungsfrei auf einem Luftkissentisch bewegen. Er ist mit einem dünnen Faden an einer festen Stange befestigt und wird nun so angestoßen, dass er um die Stange rotiert und sich der stets gespannte Faden dabei an der Stange aufwickelt.

Wie verhält sich die Bahngeschwindigkeit des Pucks während der Bewegung?

- A Sie bleibt konstant.
- B Sie erhöht sich.
- C Sie verringert sich.

D Das lässt sich so nicht beantworten.

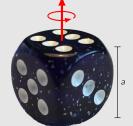
Aufgabe 10 - Fall auf Exoplanet (MC-Aufgabe)

(2. Rd. zur IPhO 2022, Aufgabengruppe der PhysikOlympiade, Thomas Hellerl)

Auf der Oberfläche eines extrasolaren Planeten - kurz: Exoplaneten - ist die Fallzeit eines Körpers aus einer kleinen Höhe h unter Vernachlässigung aller Reibungseffekte genau doppelt so groß, wie auf der Erde.

Welche der folgenden Aussagen ist damit vereinbar, wenn man von einem kugelsymmetrischen Aufbau des Exoplaneten ausgeht?

Der Exoplanet hat ...


- A ... die halbe Erdmasse und den doppelten Erdradius.
- B ... genau die Erdmasse und vierfachen Erdradius.
- C ... die doppelte Erdmasse und den doppelten Erdradius.
- D ... die vierfache Erdmasse und den vierfachen Erdradius.

Aufgabe 11 - Rotierender Würfel (MC-Aufgabe)

(2. Rd. zur IPhO 2019, Aufgabengruppe der PhysikOlympiade - Stefan Petersen)

Bezeichne mit I das Trägheitsmoment des nebenstehend abgebildeten Würfels bei Drehung um die eingezeichnete Achse durch die Mittelpunkte zweier gegenüberliegender Seiten.

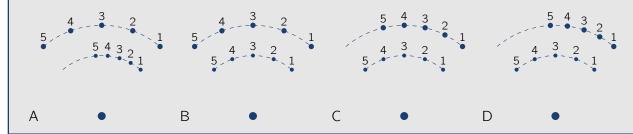
Wie groß ist das entsprechende Trägheitsmoment eines Würfels aus dem gleichen Material aber mit doppelt so großer Kantenlänge *a*?

A 21

B 41

C 16/

D 321

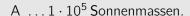

1.3 Himmelsmechanik

Aufgabe 12 - Erde und Mars (MC-Aufgabe)

(1. Rd. zur IPhO 2017)

Die folgenden Abbildungen sollen, von rechts nach links, jeweils fünf Schnappschüsse der Bahnpositionen von Erde und Mars darstellen, die jeweils zu gleichen Zeiten aufgenommen worden sind. Die Verhältnisse der Bahnradien sind maßstabsgetreu, die Planeten aber stark vergrößert.

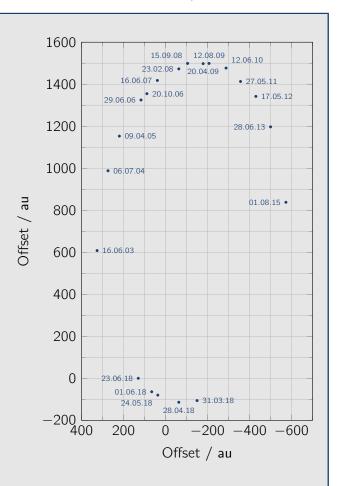
Gib an, welche der Abbildungen korrekt ist und begründe deine Antwort.


Aufgabe 13 - Schwarzes Loch in der Milchstraße (MC-Aufgabe)

(2. Rd. zur IPhO 2021, Aufgabengruppe der PhysikOlympiade - Stefan Petersen)

Der Physiknobelpreis 2020 wurde für die Entdeckung eines sehr massereichen, kompakten Objektes im Zentrum unserer Galaxie, der Milchstraße, vergeben. Vieles deutet darauf hin, dass es sich bei diesem Objekt um ein schwarzes Loch handelt. Die nebenstehende Abbildung zeigt die zu verschiedenen Daten beobachtete Position eines Sternes relativ zur vermuteten Position des Zentrums der Milchstraße. Die Position ist in Vielfachen des Abstandes Sonne-Erde, also in astronomischen Einheiten mit 1 au = $1,50 \cdot 10^{11}$ m, angegeben. Der Stern befindet sich also auf galaktischen Längenmaßstäben in der Nähe des Zentrums der Milchstraße. Nimm vereinfachend an, dass die Bahn des Sterns in der Zeichenebene verläuft und dass die Bahn nicht durch relativistische Effekte beeinflusst wird.

Welche Masse lässt sich aus den Daten für das im Zentrum der Milchstraße vermutete schwarze Loch als Vielfaches der Sonnenmasse mit $M_{\text{Sonne}} = 1,99 \cdot 10^{30} \, \text{kg}$ abschätzen?


Die Masse des schwarzen Loches entspricht am ehesten . . .

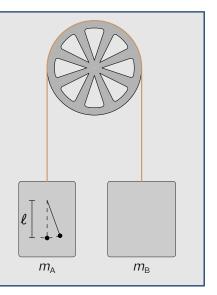
B ... $2 \cdot 10^6$ Sonnenmassen.

C ... $4 \cdot 10^7$ Sonnenmassen.

D ... $8 \cdot 10^8$ Sonnenmassen.

1.4 Schwingungen & Wellen

Aufgabe 14 - Pendel im Fahrstuhl (MC-Aufgabe)


(2. Rd. zur IPhO 2022)

Zwei Fahrstuhlkabinen der Massen $m_{\rm A}$ und $m_{\rm B}$ mit $m_{\rm A} < m_{\rm B}$ hängen an den Enden eines langen Seiles, das über eine feste Rolle geführt ist. Die Masse der Rolle und des Seils können vernachlässigt werden. In der linken Kabine hängt ein Fadenpendel der Länge ℓ . Bei ruhenden Kabinen und kleinen Auslenkungen beträgt die Periodendauer des Pendels T.

Wenn die Kabinen losgelassen werden, bewegen diese sich reibungsfrei unter dem Einfluss der Schwerkraft.

Wie muss die Länge ℓ' des Fadenpendels in der linken Kabine gewählt werden, damit es nach dem Loslassen der Kabine mit der Periode $\mathcal T$ schwingt?

A
$$\ell' = \frac{m_a}{m_B} \ell$$
 B $\ell' = \frac{2 m_A}{m_A + m_B} \ell$ C $\ell' = \frac{2 m_B}{m_A + m_B} \ell$ D $\ell' = \frac{m_B}{m_A} \ell$

Aufgabe 15 - Schwingung mit Hindernis (MC-Aufgabe)

(2. Rd. zur IPhO 2020)

Eine kleine Metallkugel hängt, wie nebenstehend skizziert, an einem dünnen Faden der Länge L von der Decke. Wenn dieses Fadenpendel leicht zur Seite ausgelenkt und losgelassen wird, schwingt es mit einer Schwingungsperiodendauer $T=1,0\,\mathrm{s}$ parallel zur Wand.

Nun wird ein Nagel in einem Abstand von $\frac{3}{4}L$ von der Decke fest in die Wand geschlagen. Das Fadenpendel stößt beim Schwingen nach rechts an den Nagel und wird durch diesen behindert. Die Kugel wird jetzt aus der in Abbildung 3 rechts gezeigten Position losgelassen.

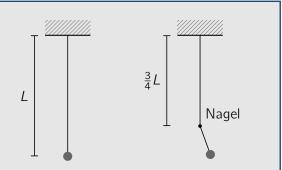
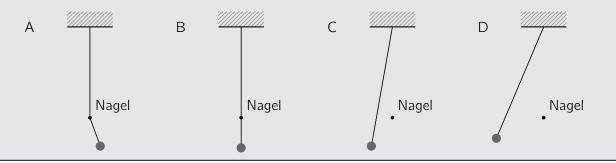
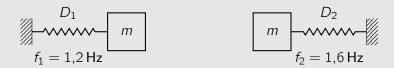
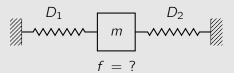



Abb. 3. Skizze des Pendels ohne (links) und mit Nagel in der Wand (rechts).

Welche der folgenden Abbildungen zeigt die Position der Kugel 1,5 s nach dem Loslassen?




Aufgabe 16 - Doppeltes Federpendel (MC-Aufgabe)

(2. Rd. zur IPhO 2023, Aufgabengruppe der PhysikOlympiade - Thomas Hellerl)

In den beiden in der Abbildung gezeigten Federpendeln schwingt jeweils ein Körper der Masse m reibungsfrei. Die Federkonstanten D_1 und D_2 der beiden hookeschen Federn sind dabei jedoch unterschiedlich. Daher schwingen die Körper nach einer Auslenkung mit unterschiedlichen Frequenzen f_1 und f_2 .

Wie groß ist die Schwingungsfrequenz (Eigenfrequenz) des unten gezeigten Systems, in dem die Federn gekoppelt sind?

A 1,4 Hz B 2,0 Hz C 2,4 Hz D 2,8 Hz

2 Elektrizitätslehre

2.1 Elektrische & magnetische Felder

Aufgabe 17 - Coulombkraft (MC-Aufgabe)

(1. Rd. zur IPhO 2017)

Zwei gleich große, geladene Metallkugeln befinden sich in einem sehr großen Abstand voneinander. Die Ladung der einen Kugel ist drei mal so groß wie die der anderen. Die Kraft, die die Kugeln aufeinander ausüben, ist F. Nun werden die Kugeln miteinander in Kontakt gebracht und anschließend in einem Abstand positioniert, der doppelt so groß wie anfänglich ist.

Wie groß ist jetzt etwa die Kraft zwischen ihnen?

A 0.25 F

B 0.33 F

C 0.50 F

D Die Kraft bleibt gleich.

Aufgabe 18 - Koaxialkabel (MC-Aufgabe)

(2. Rd. zur IPhO 2023, Aufgabengruppe der PhysikOlympiade - Arne Wolf)

Ein Koaxialkabel besteht, wie nebenstehend im linken Querschnitt abgebildet, aus einem langen schmalen Zylinder mit spezifischem Widerstand ρ_1 ummantelt von einem Hohlzylinder mit spezifischem Widerstand $\rho_2 > \rho_1$, Durch das Kabel fließt ein Strom der Stärke I.

Ein zweites, rechts abgebildetes Koaxialkabel sieht von außen aus wie das erste, besteht im Inneren aber nur aus einem Material. Der spezifische Widerstand dieses Materials ist ρ und die Stromstärke in dem zweiten Kabel beträgt ebenfalls I.

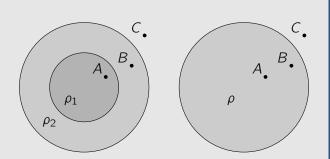


Abb. 4. Querschnitt des ersten (links) und zweiten (rechts) Koaxialkabels.

An wie vielen der gekennzeichneten Punkte A, B und C unterscheiden sich die durch das jeweilige Kabel hervorgerufenen Magnetfelder?

A 0

B 1

C 2

D 3

Aufgabe 19 - Felder (MC-Aufgabe)

(2. Rd. zur IPhO 2019)

Ein sehr leichtes, geladenes Teilchen wird durch eine Spannung U beschleunigt. Anschließend fliegt es in einen Bereich, der von einem konstanten Magnetfeld senkrecht zur Bewegungsrichtung des Teilchens durchsetzt ist. Das Teilchen beschreibt in diesem Bereich einen Kreisbogen mit einem Kreisradius von $r=1,50\,\mathrm{cm}$.

Nun wird ein elektrisches Feld der konstanten Feldstärke $E=4,40\cdot 10^4\,\mathrm{V\,m^{-1}}$ eingeschaltet, das senkrecht sowohl zum magnetischen Feld als auch zur momentanen Bewegungsrichtung des Teilchens orientiert ist. Das Teilchen bewegt sich daraufhin geradeaus weiter.

Wie groß ist die Spannung U mit der das Teilchen anfänglich beschleunigt wurde?

A 110 V

B 220 V

C 330 V

D 440 V

Aufgabe 20 - Geladener Staub (MC-Aufgabe)

(2. Rd. zur IPhO 2021, Aufgabengruppe der PhysikOlympiade, Stefan Petersen)

Sechs identische, anfänglich ruhende Staubteilchen mit Masse $m=2,0\cdot 10^{-10}$ kg und Ladung $q=2,0\cdot 10^{-12}$ C werden, wie nebenstehend skizziert, im Vakuum in einem regelmäßigen Sechseck der Kantenlänge $a=10\,\mu\mathrm{m}$ angeordnet. Im Mittelpunkt des Sechsecks befindet sich ein ebenfalls anfänglich ruhendes siebtes Staubteilchen mit gleicher Masse m aber entgegengesetzter Ladung -q. Nun werden die Teilchen losgelassen.

Wie groß ist die Geschwindigkeit eines der positiv geladenen Staubteilchen relativ zum negativ geladenen Staubteilchen nachdem sich die Teilchen weit voneinander entfernt haben?

A etwa $5.5 \,\mathrm{m}\,\mathrm{s}^{-1}$

B etwa $6.0\,\mathrm{m\,s^{-1}}$

C etwa $9.8 \,\mathrm{m}\,\mathrm{s}^{-1}$

D etwa $13 \,\mathrm{m}\,\mathrm{s}^{-1}$

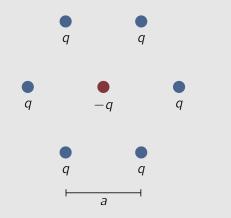
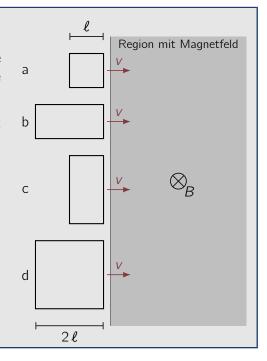


Abb. 5. Skizze der Anordnung. Die äußeren Teilchen besitzen jeweils eine Masse m und eine Ladung q, das zentrale Teilchen ebenfalls eine Masse m aber eine Ladung – q.

Aufgabe 21 - Induktion in Leiterschleifen (MC-Aufgabe)

(2. Rd. zur IPhO 2023, Aufgabengruppe der PhysikOlympiade - Stefan Petersen)

Die vier in der Abbildung gezeigten Leiterschleifen (a bis d) besitzen jeweils Kantenlängen ℓ oder 2ℓ . Sie bewegen sich mit konstanter Geschwindigkeit v in eine scharf begrenzte Region mit einem homogenen Magnetfeld der Flussdichte B, das in die Zeichenebene hinein orientiert ist.


Wie verhalten sich die direkt bei Eintritt in die Region mit dem Magnetfeld in den Schleifen induzierten Spannungen $U_{\rm a}$ bis $U_{\rm d}$ zueinander?

A
$$|U_{a}| = |U_{b}| = |U_{c}| = |U_{d}|$$

B
$$|U_{\rm a}| < |U_{\rm b}| < |U_{\rm c}| < |U_{\rm d}|$$

$$C |U_a| = |U_b| < |U_c| = |U_d|$$

$$|U_{a}| < |U_{b}| = |U_{c}| < |U_{d}|$$

Aufgabe 22 - Magnetfall (MC-Aufgabe)

(2. Rd. zur IPhO 2024)

Ein zylinderförmiger Magnet wird durch drei verschiedene, senkrecht aufgestellte Rohre fallen gelassen. Die Rohre haben identische Abmessungen, bestehen aber aus unterschiedlichem Material - eines aus Plexiglas, eines aus Messing und eines aus Aluminium.

Für eine Fallstrecke von $L=1.0\,\mathrm{m}$ in den Rohren werden die folgenden Fallzeiten des Magneten gemessen:

Plexiglas
$$t_{Plexiglas} = 0.46 s$$

Messing
$$t_{\text{Messing}} = 2,15 \,\text{s}$$

Aluminium
$$t_{Aluminium} = 3.81 s$$

Die elektrische Leitfähigkeit des Materials, aus dem das Aluminiumrohr besteht, beträgt $\sigma_{\mathrm{Aluminium}} = 3.7 \cdot 10^7 \,\mathrm{A}\,\mathrm{V}^{-1}\,\mathrm{m}^{-1}.$

Welcher Wert ergibt sich aus den Fallzeiten als Abschätzung für die elektrische Leitfähigkeit $\sigma_{ ext{Messing}}$ des Materials des Messingrohres?

$$\text{A} \quad 1,2 \cdot 10^7 \, \text{A} \, \text{V}^{-1} \, \text{m}^{-1} \qquad \quad \text{B} \quad 2,1 \cdot 10^7 \, \text{A} \, \text{V}^{-1} \, \text{m}^{-1}$$

B
$$2.1 \cdot 10^7 \,\mathrm{A}\,\mathrm{V}^{-1}\,\mathrm{m}^{-1}$$

C
$$4.9 \cdot 10^7 \,\mathrm{A}\,\mathrm{V}^{-1}\,\mathrm{m}^{-1}$$

Aufgabe 23 - Fallende Leiterschleife im Magnetfeld (MC-Aufgabe)

(2. Rd. zur IPhO 2021, Aufgabengruppe der PhysikOlympiade - Richard Reindl)

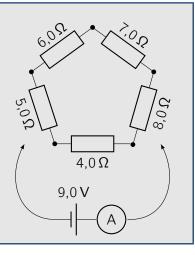
Eine quadratische Leiterschleife mit Kantenlänge a, Wider-Leiterschleife stand R und Masse m fällt, wie nebenstehend skizziert, aus а der Ruhe heraus in eine scharf begrenzte Region der Breite b > a mit einem homogenen Magnetfeld der Flussdichte \vec{B} , das in die Zeichenebene hinein orientiert ist. Die Graphen A, B, C und D sollen den zeitlichen Verlauf der Geschwindigkeit der Leiterschleife für verschiedene Magnetfeldstärken darstellen. b Welcher der Graphen zeigt einen physikalisch möglichen Vorgang? Region mit Magnetfeld 0 0 В 0 0 C D

2.2 Gleischstromkreise

Aufgabe 24 - Fünfeck aus Widerständen (MC-Aufgabe)

(2. Rd. zur IPhO 2019)

Eine Batterie mit einer Spannung von $9.0\,\mathrm{V}$ ist mit einem idealen Amperemeter in Reihe geschaltet. Die Reihenschaltung kann an zwei beliebige Ecken des abgebildeten Widerstandfünfecks angeschlossen werden.


Wie groß ist die betragsmäßig kleinste Stromstärke, die dabei durch das Amperemeter fließt?

A 0,30 A

B 0,60 A

C 1,2A

D 2,3 A

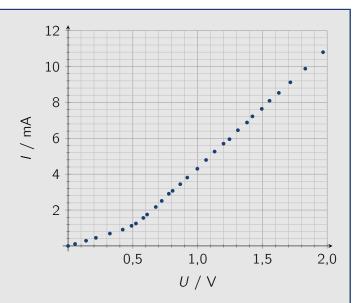
Aufgabe 25 - Batteriebetrieb (MC-Aufgabe)

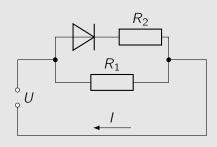
(1. Rd. zur IPhO 2020)

Eine einzelne Batterie kann eine Glühlampe für eine Zeit t zum Leuchten bringen. Nimm vereinfachend an, dass die Lampe mit konstanter Helligkeit leuchtet, bis die Batterie leer ist, und dass der Widerstand der Glühlampe konstant ist.

Welche Aussage ist korrekt, wenn zwei dieser Batterien zum Betreiben von zwei der Glühlampen verwendet werden?

- A Wenn die Batterien in Serie und die Glühlampen in Serie geschaltet sind, können die Glühlampen etwa eine Zeit t/4 betrieben werden.
- B Wenn die Batterien in Serie und die Glühlampen parallel geschaltet sind, können die Glühlampen etwa eine Zeit t/2 betrieben werden.
- C Wenn die Batterien parallel und die Glühlampen in Serie geschaltet sind, können die Glühlampen etwa eine Zeit 2 t betrieben werden.
- D Wenn die Batterien parallel und die Glühlampen ebenfalls parallel geschaltet sind, können die Glühlampen etwa eine Zeit t betrieben werden.




Aufgabe 26 - Diode und Widerstände (MC-Aufgabe)

(2. Rd. zur IPhO 2020)

Eine Diode ist ein elektronisches Bauelement, das vereinfacht in einer Richtung, der Sperrrichtung, komplett isolierend wirkt. In umgekehrter Richtung, der Durchlassrichtung, lässt die Diode bis zu einer bestimmten Spannung auch kaum Strom passieren. Ab dieser Spannung verhält sie sich aber näherungsweise wie ein idealer Leiter.

In der nachfolgend abgebildeten Schaltung sind eine Diode (\rightarrow) und zwei Widerstände mit Widerstandswerten R_1 und R_2 verbaut. In dem nebenstehenden Graphen sind Messwerte der Stromstärke I in der Schaltung als Funktion der angelegten Spannung U dargestellt.

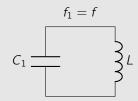
Welche Widerstandswerte passen am besten zu den dargestellten Messwerten?

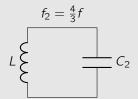
A
$$R_1 = 220 \Omega$$
 und $R_2 = 670 \Omega$

B
$$R_1=220\,\Omega$$
 und $R_2=330\,\Omega$

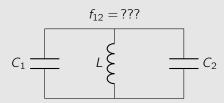
C
$$R_1 = 470 \,\Omega$$
 und $R_2 = 220 \,\Omega$

D
$$R_1 = 470 \,\Omega$$
 und $R_2 = 150 \,\Omega$




2.3 Wechselstromkreise

Aufgabe 27 - Schwingkreise (MC-Aufgabe)


(2. Rd. zur IPhO 2024, Aufgabengruppe der PhysikOlympiade - Thomas Hellerl & Rolf Faßbender)

Eine Schaltung aus einer idealen Spule und einem idealen Kondensator heißt Schwingkreis. Die beiden, oben abgebildeten elektrischen Schwingkreise mit gleicher Induktivität L aber unterschiedlichen Kapazitäten C_i schwingen völlig widerstandslos mit den angegebenen Frequenzen.

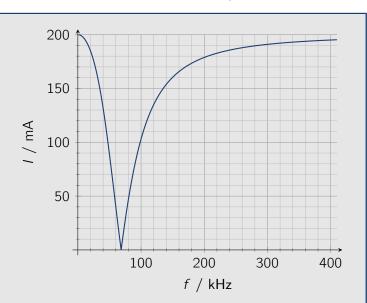
Wie groß ist die Schwingungsfrequenz f_{12} (Eigenfrequenz) des folgenden, gekoppelten Systems?

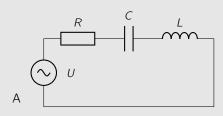
A $\frac{2}{3}f$

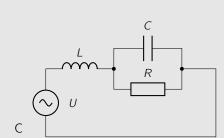
B $\frac{3}{4}t$

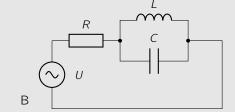
 $C = \frac{4}{5}t$

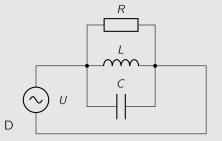
D $\frac{5}{4}f$


Aufgabe 28 - Wechselstromschaltkreis (MC-Aufgabe)


(2. Rd. zur IPhO 2019, Aufgabengruppe der PhysikOlympiade - Stefan Petersen)


Ein Widerstand mit Widerstandswert R, ein Kondensator der Kapazität C und eine Spule der Induktivität L werden an eine Wechselspannungsquelle angeschlossen. Die Amplitude der Wechselspannung beträgt U und die Bauteile können als ideal angenommen werden.


Der folgende Graph zeigt die Amplitude *I* der Stromstärke in dem Stromkreis als Funktion der Frequenz *f* der sinusförmigen Wechselspannung.


Welche der folgenden Schaltskizzen stellt die verwendete Schaltung korrekt dar?

3 Thermodynamik

3.1 Temperatur, Wärmekapazität & thermische Ausdehnung

Aufgabe 29 - Heiße Scheibe (MC-Aufgabe)

(1. Rd. zur IPhO 2017)

Eine Metallscheibe mit einem Loch in ihrer Mitte wird erwärmt.

Was passiert beim Erwärmen?

A Das Loch wird größer. B Das Loch wird kleiner. C Das Loch bleibt gleich groß.

D Diese Frage lässt sich ohne weitere Informationen nicht beantworten.

Aufgabe 30 - Temperatureinheiten (MC-Aufgabe)

(2. Rd. zur IPhO 2021, Aufgabengruppe der PhysikOlympiade, Stefan Petersen)

Die fiktive Temperatureinheit Nups ist durch Festlegung von 0 K = 1000 Nups, 0 °C = 400 Nups und eine lineare Änderung mit der Temperatur festgelegt.

Welcher Temperatur in °C entspricht am ehesten 0 Nups?

A 120 °C

B 150 °C

C 180 °C

D 210 °C

Aufgabe 31 - Wärmekapazität (MC-Aufgabe)

(1. Rd. zur IPhO 2017)

Die gleiche Wärmeenergie wird vier Proben verschiedener Stoffe zugeführt. Die Temperatur von $3\,g$ des Stoffes A erhöht sich dabei um $8\,K$, die Temperatur von $4\,g$ des Stoffes B um $5\,K$, die Temperatur von $6\,g$ des Stoffes C um $9\,K$ und die Temperatur von $7\,g$ des Stoffes D um $4\,K$.

Welcher Stoff hat die höchste spezifische Wärmekapazität?

A B C D

Aufgabe 32 - Wasserkocher mit Eiswürfel (MC-Aufgabe)

(2. Rd. zur IPhO 2024)

In einem Wasserkocher wird Wasser erhitzt. Während des Erhitzens wird ein Eiswürfel der Temperatur $\vartheta_0 = 0\,^{\circ}$ C in das Wasser geworfen. Abbildung 6 zeigt die Temperatur des Wassers als Funktion der Zeit. Die Temperatur des Wassers ist anfänglich gleich der Raumtemperatur und kann zu jeder Zeit als im ganzen Wasserkocher gleich angenommen werden.

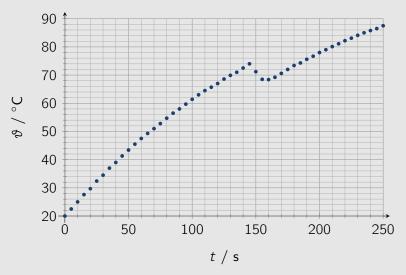


Abb. 6. Temperatur & im Wasserkocher in Abhängigkeit von der Heizzeit t.

Die Heizleistung des Wasserkochers beträgt 900 W. Für die spezifische Wärmekapazität von Wasser kann der Wert $c=4,2\,\mathrm{kJ\,kg^{-1}\,K^{-1}}$ verwendet werden und für die spezifische Schmelzwärme (oder Schmelzenthalpie) von Eis $h=335\,\mathrm{kJ\,kg^{-1}}$.

Welche Masse besaß der Eiswürfel, als er in das Wasser geworfen wurde?

A 16g

B 26g

C 56 g

D 145 g

Aufgabe 33 - Eis schmelzen (MC-Aufgabe)

(2. Rd. zur IPhO 2019)

An einem kalten Wintertag stehen drei identische, nicht isolierte Holzkisten vor dem Haus, die jeweils mit der gleichen Menge Eis der Temperatur 0,0 °C befüllt werden. Um das Eis zu schmelzen, wird in jede der Boxen ein elektrisches Heizelement platziert. Die Heizelemente sind identisch, werden aber mit unterschiedlichen Spannungen betrieben.

In der ersten Kiste wird das Heizelement mit einer Spannung von $80\,\text{V}$ betrieben. Das gesamte Eis in der Kiste schmilzt dann in $20,0\,\text{Minuten}$. An das Heizelement der zweiten Kiste wird eine Spannung von $120\,\text{V}$ angelegt, woraufhin das Eis in nur $4,0\,\text{Minuten}$ vollständig schmilzt. In der dritten Kiste wird für das Heizelement eine Spannung von $40\,\text{V}$ verwendet.

Die Heizelemente sind so konstruiert, dass sie die gesamte Eismasse in der jeweiligen Kiste gleichzeitig heizen. Nimm an, dass das Schmelzwasser nicht durch das Heizelement erwärmt wird.

Welche der folgenden Aussagen ist dann für das Schmelzen des Eises in der dritten Kiste zutreffend?

- A Zum Schmelzen des gesamten Eises in der dritten Kiste werden etwa 80 Minuten benötigt.
- B Zum Schmelzen des gesamten Eises in der dritten Kiste werden etwa 100 Minuten benötigt.
- C Zum Schmelzen des gesamten Eises in der dritten Kiste werden etwa 130 Minuten benötigt.
- D Mit der verwendeten Spannung ist es nicht möglich, das gesamte Eis zu schmelzen.

3.2 Wärmetransport

Aufgabe 34 - Wärmeleitung (MC-Aufgabe)

(2. Rd. zur IPhO 2020)

Die Enden von drei runden Metallstäben aus identischem Material werden jeweils auf konstanten Temperaturen gehalten. Für die Stäbe sind die folgenden Daten bekannt:

Stab I - Durchmesser: 2,0 cm, Länge: 20 cm, Temperaturen der Stabenden: 50 °C und 20 °C Stab II - Durchmesser: 3,0 cm, Länge: 50 cm, Temperaturen der Stabenden: 60 °C und 30 °C Stab III - Durchmesser: 4,0 cm, Länge: 80 cm, Temperaturen der Stabenden: 70 °C und 40 °C

Wie verhalten sich die durch die Stäbe aufgrund von Wärmeleitung übertragenen Wärmeleistungen P_{II} , P_{III} und P_{IIII} zueinander (Die Leistungen können alle als positiv angenommen werden)?

 $A \quad P_{\text{I}} < P_{\text{II}} = P_{\text{III}} \qquad \quad B \quad P_{\text{I}} = P_{\text{II}} < P_{\text{III}} \qquad \quad C \quad P_{\text{II}} < P_{\text{I}} = P_{\text{III}} \qquad \quad D \quad P_{\text{III}} < P_{\text{I}} < P_{\text{I}}$

Aufgabe 35 - Widerstandserwärmung (MC-Aufgabe)

(2. Rd. zur IPhO 2023, Aufgabengruppe der PhysikOlympiade - Bernd Schade & Stefan Petersen)

Zwei Widerstände gleicher Bauform werden parallel an eine Spannungsquelle mit einer Spannung von 2,6 V angeschlossen. Dabei fließt ein Gesamtstrom von 310 mA. Mit einer Infrarotkamera wird das nebenstehende Bild der Schaltung gemacht. Die Kamera kann nach einer Kalibrierung auch die Oberflächentemperaturen der beiden Widerstände ermitteln. Sie betragen 33°C und 67°C. Die Umgebungstemperatur ist dabei 21 °C.

Welche Werte besitzen die beiden Widerstände ungefähr?

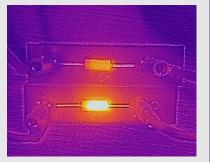


Abb. 7. Infrarotaufnahme der Widerstände.

A 1.7Ω und 6.7Ω

B 12Ω und 30Ω

C $10\,\Omega$ und $45\,\Omega$

D 20Ω und 80Ω

Aufgabe 36 - Wärmestrahlung (MC-Aufgabe)

(1. Rd. zur IPhO 2020)

Ein Metallstück gibt bei einer Temperatur von $550\,^{\circ}\text{C}$ Wärmestrahlung mit einer Leistung P ab.

Wie groß ist die abgestrahlte Leistung, wenn die Temperatur des Metalls auf 1100 °C erhöht wird?

A etwa 1,7 *P*

B etwa 2,0 *P*

C etwa 7,7 P

D etwa 16 P

Aufgabe 37 - Erderwärmung stoppen (MC-Aufgabe)

(2. Rd. zur IPhO 2022, Aufgabengruppe der PhysikOlympiade, Richard Reindl)

Der verrückte Wissenschaftler Knox hat eine Methode gefunden, die Erderwärmung zu stoppen. Dazu will er den Radius r der als kreisförmig angenommenen Erdbahn um 1,0% vergrößern.

Um wieviel könnte dabei die mittlere Temperatur T an der Erdoberfläche, die momentan etwa 15 °C beträgt, ungefähr sinken?

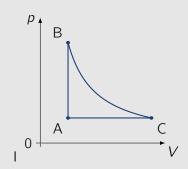
A etwa 0,7 K

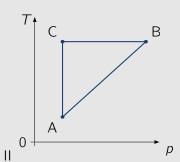
B etwa 1,4 K

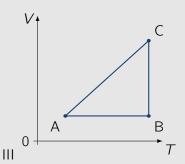
C etwa 2,8 K

D etwa 5.6 K

3.3 Gasgesetze und Kreisprozesse


Aufgabe 38 - Kreisprozess (MC-Aufgabe)


(2. Rd. zur IPhO 2019)


Ein ideales Gas durchläuft einen Kreisprozess. Ausgehend von dem Zustand A wird es zunächst bei konstantem Volumen bis zu einem Zustand B erwärmt, anschließend expandiert es ohne Temperaturänderung bis zu einem Zustand C und wird schließlich isobar wieder zum Ausgangszustand A komprimiert.

Bezeichne mit p, V und T den Druck, das Volumen und die Temperatur des Gases.

Welche der nachfolgenden Graphen stellen den Kreisprozess korrekt dar?

- A Nur die Graphen I und II.
- B Nur die Graphen I und III.
- C Nur die Graphen II und III.
- D Alle drei Graphen.

Aufgabe 39 - Feuchte Badezimmerluft (MC-Aufgabe)

(2. Rd. zur IPhO 2022)

Nach einer ausgiebigen Dusche beträgt die Temperatur im Badezimmer 28 °C und die relative Luftfeuchtigkeit liegt bei 80 %.

In der nebenstehenden Abbildung ist die Sättigungsdampfdruckkurve für Wasserdampf dargestellt. Sie gibt den maximalen Wasserdampfdruck $p_{\rm sat}$ an, der bei einer Temperatur ϑ möglich ist, bevor der Wasserdampf in der Luft kondensiert.

Wie viel Wasserdampf (in g m⁻³) befindet sich in der Luft im Badezimmer?

Verwende für die molare Masse von Wasser den Wert $M_{\text{Wasser}} = 18.0 \,\mathrm{g} \,\mathrm{mol}^{-1}$.

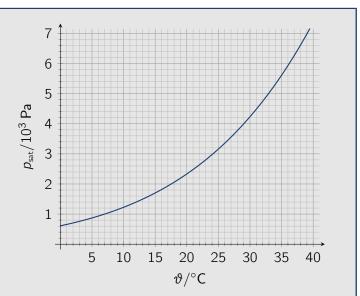


Abb. 8. Sättigungsdampfdruckkurve für Wasserdampf.

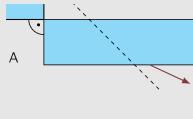
A etwa $22 \,\mathrm{g}\,\mathrm{m}^{-3}$ B etwa $27 \,\mathrm{g}\,\mathrm{m}^{-3}$

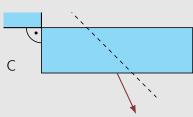
C etwa $2.3 \cdot 10^2 \,\mathrm{g}\,\mathrm{m}^{-3}$

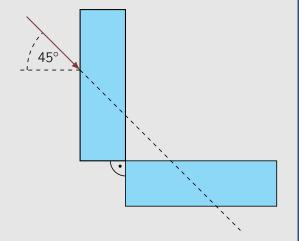
D etwa $3.0 \cdot 10^{3} \, \text{g m}^{-3}$

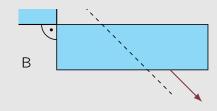
4 Optik

4.1 Geometrische Optik


Aufgabe 40 - Lichtbrechung (MC-Aufgabe)


(2. Rd. zur IPhO 2020)


Ein Lichtstrahl trifft, wie nebenstehend abgebildet, auf eine Anordnung von zwei gleich großen, senkrecht zueinander aufgebauten Glasquadern und wird beim Eintritt in den ersten Quader gebrochen. Der Brechungsindex des Glases beträgt 1,5. Außerhalb der Quader befindet sich Luft.


Welcher der folgenden Abbildungsausschnitte zeigt den Verlauf des gebrochenen Lichtstrahls nach dem Austritt aus dem zweiten Quader?

Der Verlauf des Lichtstrahls in dem Quader ist dabei nicht dargestellt und die gestrichelte Linie gibt den Verlauf des ungebrochenen Lichtstrahls wieder.

Aufgabe 41 - Glasquader (MC-Aufgabe)

(2. Rd. zur IPhO 2023, Aufgabengruppe der PhysikOlympiade - Thomas Hellerl & Titus Bornträger)

Ein in der Zeichenebene verlaufender Laserstrahl trifft von links unter dem Einfallswinkel $\alpha=30^\circ$ auf einen Glasquader (Brechungsindex n = 1, 5) mit den Seitenlängen a und 4a. Wie in der nicht maßstabsgetreuen Skizze in Abbildung 9 angedeutet, trifft er im Glasquader schließlich genau auf die rechte untere Ecke.

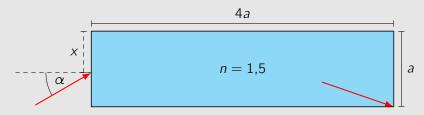


Abb. 9. Nicht maßstabsgetreue Skizze des Laserstrahls im Glasquader in der Seitenansicht.

Wie groß ist der Abstand x der Eintrittsstelle von der oberen Begrenzungsfläche des Quaders?

A
$$a \cdot (\sqrt{2} - 1)$$

B
$$a \cdot (2 - \sqrt{3})$$

C
$$a \cdot \left(1 - \frac{\sqrt{2}}{2}\right)$$

A
$$a \cdot \left(\sqrt{2} - 1\right)$$
 B $a \cdot \left(2 - \sqrt{3}\right)$ C $a \cdot \left(1 - \frac{\sqrt{2}}{2}\right)$ D $a \cdot \left(1 - \frac{\sqrt{3}}{3}\right)$

Aufgabe 42 - Sammellinse (MC-Aufgabe)

(1. Rd. zur IPhO 2020)

Eine dünne Sammellinse erzeugt von einem Objekt, das einen Abstand d von der Linse besitzt, ein Bild, dessen Abstand von der Linse ebenfalls d beträgt.

In welchem Abstand von der Linse entsteht das Bild, wenn der Abstand zwischen Objekt und Linse verdoppelt wird?

A etwa $\frac{1}{2}d$

B etwa $\frac{2}{3} d$

C etwa $\frac{3}{2} d$

D etwa 2 d

Aufgabe 43 - Linsensammlung (MC-Aufgabe)

(2. Rd. zur IPhO 2019)

Aus den Tiefen der Physiksammlung hat dein Physiklehrer eine Kiste mit drei dünnen Linsen zu Tage befördert, die mit I, II und III beschriftet sind. Die Linsen I und II sind bikonvex, wohingegen Linse III auf beiden Seiten konkav geformt ist. Zur Bestimmung der Brennweiten der Linsen hast du deiner Lehrkraft beim Durchführen einiger Abbildungsversuche geholfen.

Dazu habt ihr einen Gegenstand in einer Entfernung von 50,0 cm zu einer der Linsen oder zu einer Kombination von zwei dicht hintereinander stehenden Linsen positioniert und den Abstand zwischen der Linse bzw. dem Linsensystem und dem entstehenden reellen Bild des Gegenstandes gemessen. Die nebenstehende Tabelle gibt die in den einzelnen Versuchen gemessenen Bildweiten an. Dummerweise hat dein Lehrer ab dem zweiten Versuch vergessen aufzuschreiben, welche der Linse(n) jeweils verwendet wurde(n), aber vielleicht kannst du trotzdem die folgende Frage beantworten:

Versuch	Linse(n)	Bildweite
1	I	21,4 cm
2		50,2 cm
3		11,6 cm
4		30,9 cm
(5)		175,0 cm

Welche der Linse(n) wurde(n) in den einzelnen Versuchen verwendet?

A ②: I & III

③: I & II

(4): II

(5): II & III

B 2:1& III

(3): II

(4): II & III

(5): I & II

C 2: II

③: I & II

4: I & III

5: || & |||

D ②: II & III

③: II

4: I & II

(5): I & III

Aufgabe 44 - Zwei Bilder (MC-Aufgabe)

(2. Rd. zur IPhO 2024)

Mit einer Handykamera wird ein Foto einer wunderschönen Trinkflasche aufgenommen, die sich in einer Entfernung von etwa 35 cm von der Kamera befindet. Auf dem Foto erscheint der etwa 5,8 m entfernte Hintergrund unscharf. Wird nun eine Linse direkt vor der Kamera positioniert, so erscheint der Hintergrund durch die Linse auf dem Foto scharf.

Abb. 10. Fotos der Trinkflasche ohne (links) und mit (rechts) Linse. Die Linse ist an dem Rand zu erkennen und befindet sich im linken Teil des rechten Fotos.

Wie groß ist die Brennweite der Linse?

Hinweis: Positive Brennweiten kennzeichnen Sammellinsen und negative Zerstreuungslinsen.

A etwa $-35\,\mathrm{cm}$ B etwa $-18\,\mathrm{cm}$ C etwa $35\,\mathrm{cm}$ D etwa $58\,\mathrm{cm}$

4.2 Wellenoptik & Strahlung

Aufgabe 45 - Interferenz (MC-Aufgabe)

(2. Rd. zur IPhO 2020)

In einem Versuch fällt einfarbiges Laserlicht senkrecht auf ein optisches Gitter mit 300 Linien pro mm. Hinter dem Gitter wird das Interferenzmuster auf einem Schirm beobachtet. Der Abstand des Schirms zum Gitter ist dabei sehr groß gegenüber der Ausdehnung des Interferenzmusters.

nebenstehenden Graustufenbilder zeigen die bei Verwendung von zwei Lasern mit unterschiedlichen Wellenlängen aber ansonsten gleicher Versuchsanordnung dem Schirm entstehenden Interferenzmuster. Die Wellenlänge des vom ersten Laser emittierten Lichts beträgt 650 nm.

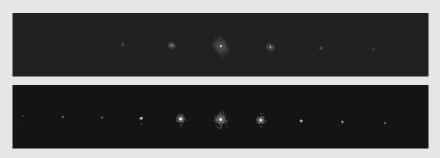


Abb. 11. Interferenzmuster auf dem Schirm für eine Wellenlänge von 650 nm (oben) und eine zweite unbekannte Wellenlänge (unten). Die Bilder zeigen den gleichen Ausschnitt des Schirms.

Wie groß ist die Wellenlänge des vom zweiten Laser emittierten Laserlichts?

A etwa 450 nm

B etwa 530 nm

C etwa 610 nm

D etwa 690 nm

Aufgabe 46 - Wasserschichtreflexion (MC-Aufgabe)

(2. Rd. zur IPhO 2024)

Die Oberfläche einer glatten, horizontalen Glasplatte ist mit einer dünnen, ebenen Wasserschicht bedeckt. Von oben fällt monochromatisches Licht der Wellenlänge 680 nm unter einem Winkel $\alpha = 30^{\circ}$ zur Flächennormalen auf die Wasseroberfläche. Der Brechungsindex der Glasplatte beträgt 1,50 und der des Wassers 1,33.

Aufgrund der Verdunstung des Wassers ändert sich die Intensität des reflektierten Lichtes periodisch. Zwischen dem Auftreten von zwei Intensitätsmaxima vergeht eine Zeit von 15 Minuten.

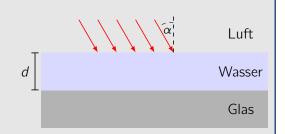


Abb. 12. Skizze zum Lichteinfall.

Mit welcher Rate nimmt die Dicke d der Wasserschicht auf dem Glas ab?

A etwa 0,3 μ m h⁻¹

B etwa $1 \,\mu\text{m}\,\text{h}^{-1}$ C etwa $3 \,\mu\text{m}\,\text{h}^{-1}$

D etwa $9 \, \mu \text{m h}^{-1}$

Aufgabe 47 - Zwei Sender (MC-Aufgabe)

(2. Rd. zur IPhO 2021, Aufgabengruppe der PhysikOlympiade, Thomas Hellerl)

Zwei identische, senkrecht zur Zeichenebene ausgerichtete, elektrische Sendedipole strahlen von den Punkten S_1 und S_2 aus gleichphasig mit der Frequenz f in den Raum. Ein Empfänger E wird von S_2 ausgehend auf einem Kreis um S_1 verschoben. Die im Empfänger gemessene Intensität in Abhängigkeit von dem Winkel α ist im Diagramm dargestellt und zeigt deutliche Maxima und Minima. Kommt der Empfänger dem Sender S_2 zu nahe, so übersteuert dieser, sodass keine Messung möglich ist.

Wie groß ist die Frequenz f der Strahlung?

A 1,5 GHz

B 3,0 GHz

C 4,5 GHz

D 6,0 GHz

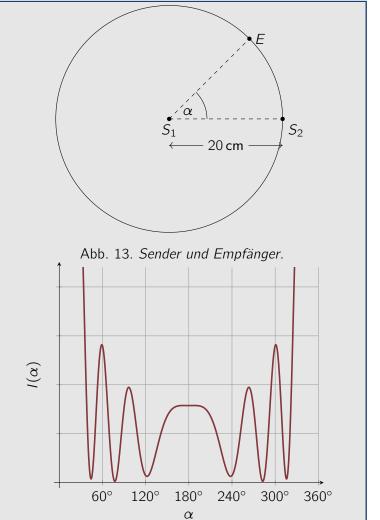


Abb. 14. Intensitätsverteilung in relativen Einheiten.

Aufgabe 48 - Bleiglasfenster (MC-Aufgabe)

(2. Rd. zur IPhO 2022, Aufgabengruppe der PhysikOlympiade, Stefan Petersen)

Räume mit Röntgengeräten werden durch dicke Wände und Fenster aus Bleiglas abgeschirmt. Ein Bleiglasfenster mit einer Dicke von 2,0 cm kann bereits 75 % der Intensität von Röntgenstrahlung abschirmen.

Wie dick muss das Bleiglasfenster sein, damit die Intensität der Strahlung hinter dem Fenster nur noch 1 % der Intensität vor dem Fenster beträgt?

A etwa 2,7 cm

B etwa 4,0 cm

C etwa 6,6 cm

D etwa 9,2 cm

5 Diverse

5.1 Atomphysik & Radioaktivität

Aufgabe 49 - Spektren (MC-Aufgabe)

(2. Rd. zur IPhO 2022, Aufgabengruppe der PhysikOlympiade, Thomas Hellerl)

Die Atome eines fiktiven Elements nehmen Zustände auf den Energiestufen

$$E_n = -\frac{C}{n^2}$$
 mit $n = 1, 2, ...$

an. Dabei ist C eine Konstante. Nur Linien der Serie der Übergänge in den Grundzustand n=1 liegen im optischen Bereich, diese aber vollständig.

Welches der nachfolgend gezeigten, linear in der Wellenlänge skalierten Spektren stellt die Emissionslinien des beschriebenen Elements korrekt dar?

Aufgabe 50 - Radioaktiver Zerfall (MC-Aufgabe)

(2. Rd. zur IPhO 2020, Aufgabengruppe der PhysikOlympiade - Thomas Hellerl)

Im Folgenden werden drei radioaktive Präparate betrachtet. Sie bestehen anfänglich zur Zeit t=0 zu $100\,\%$ aus einem einzigen radioaktiven Isotop, dem jeweiligen Mutternuklid. Die anfängliche Aktivität der Präparate wird jeweils mit A_0 bezeichnet. Auch die direkten Zerfallsprodukte, die Tochternuklide, sind wieder radioaktiv und zerfallen. Weitere nachfolgende Zerfälle werden nicht mehr betrachtet. Die Mutter- und Tochternuklide der drei Präparate sind:

Präparat ①:
226
Ra $(T_{Mutter} = 1600 \, a) \rightarrow ^{222}$ Rn $(T_{Tochter} = 3.8 \, d)$

Präparat ②:
211
Pb ($T_{\text{Mutter}} = 36,1 \, \text{min}$) \rightarrow 211 Bi ($T_{\text{Tochter}} = 2,14 \, \text{min}$)

Präparat ③:
$$^{214}\text{Pb}\ (T_{\text{Mutter}}=26.8\,\text{min}) \rightarrow ^{214}\text{Bi}\ (T_{\text{Tochter}}=19.9\,\text{min})$$

Dabei sind mit T_{Mutter} bzw. T_{Tochter} die Halbwertszeiten der jeweiligen Nuklide angegeben. Die folgenden Graphen stellen die zeitlichen Verläufe der Aktivitäten A sowohl des Mutternuklids als auch des Tochternuklids sowie der Gesamtaktivität für die drei Präparate dar.

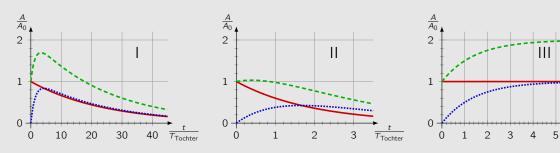


Abb. 15. Zeitliche Verläufe der Aktivitäten A sowohl des Mutternuklids als auch des Tochternuklids sowie der Gesamtaktivität der Präparate relativ zur Anfangsaktivität des Mutternuklids. Die Zeitachsen sind nach Vielfachen der Halbwertszeiten $T_{Tochter}$ des jeweiligen Tochternuklids skaliert.

Welches der drei Nuklid-Paare gehört zu welchem Diagramm?

$$\mathsf{A} \quad \begin{array}{c|cccc} \hline 1 & \boxed{2} & \boxed{3} \\ \hline \mathsf{I} & \boxed{\mathsf{II}} & \boxed{\mathsf{III}} \\ \end{array} \quad \mathsf{B} \quad \begin{array}{c|cccc} \hline 1 & \boxed{2} & \boxed{3} \\ \hline \hline \mathsf{II} & \boxed{\mathsf{III}} & \boxed{\mathsf{II}} \\ \end{array}$$

5.2 Relativitätstheorie

Aufgabe 51 - Galaktische Flaschenpost (MC-Aufgabe)

(2. Rd. zur IPhO 2021, Aufgabengruppe der PhysikOlympiade, Arne Wolf)

Ein Raumschiff startet mit der konstanten Geschwindigkeit 0,6 c von der Erde, wobei c die Vakuumlichtgeschwindigkeit bezeichnet. Nach 100 h an Bord werfen die Raumfahrenden eine Flaschenpost mit der Geschwindigkeit 0,8 c relativ zum Raumschiff in Richtung Erde.

Wie lange müssen die Erdbewohner zwischen Start des Raumschiffs und Ankunft der Flaschenpost warten?

A etwa 256 h

B etwa 320 h

C etwa 400 h

D etwa 525 h

5.3 Physikalische Dimensionen & Skalierungen

Aufgabe 52 - Leistung von Windenergieanlagen (MC-Aufgabe)

(2. Rd. zur IPhO 2024)

Windenergieanlagen erzeugen elektrische Leistung, indem sie Energie aus Wind verwenden, um Generatoren anzutreiben. Bei einer moderaten Windgeschwindigkeit beträgt die von dem Wind einer Anlage zur Verfügung gestellte und damit theoretisch maximal nutzbare Leistung P.

Welche von dem Wind der Anlage zur Verfügung gestellte Leistung ergibt sich bei einer Verdopplung der Windgeschwindigkeit?

A 2P B 3P

C 4 P

D 8P

Aufgabe 53 - Leistung von Gravitationswellen (MC-Aufgabe)

(2. Rd. zur IPhO 2019)

Die allgemeine Relativitätstheorie sagt die Existenz von Gravitationswellen, also Wellen in der Struktur der Raumzeit voraus. Diese Wellen werden von beschleunigten Massen erzeugt und breiten sich mit Lichtgeschwindigkeit aus.

Für zwei Körper mit gleicher Masse m, die sich in einem Abstand r umkreisen, lässt sich die durch Gravitationswellen abgestrahlte Leistung P mit Hilfe der Gravitationskonstante G und der Vakuumlichtgeschwindigkeit c ausdrücken.

Welcher der folgenden Ausdrücke könnte einen passenden Ausdruck für die Leistung P darstellen?

A
$$P = \frac{32}{5} \frac{G^5 m^5}{c^5 r^4}$$

$$P = \frac{32}{5} \frac{G^5 m^5}{c^4 r^5}$$

$$C \qquad P = \frac{32}{5} \, \frac{G^5 \, m^4}{c^5 \, r^5}$$

D
$$P = \frac{32}{5} \frac{G^4 m^5}{c^5 r^5}$$

Aufgabe 54 - Gezeitenheizung (MC-Aufgabe)

(2. Rd. zur IPhO 2023, Aufgabengruppe der PhysikOlympiade - Tim Pokart)

Obwohl eine dicke Eisschicht einen Großteil des auf den Saturnmond Enceladus einfallenden Sonnenlichtes reflektiert, konnte die Raumsonde Cassini auf seiner Oberfläche mehrere hundert Ki-Iometer hohe Wasserfontänen fotografieren. Der Mond bezieht die dafür notwendige Energie aus Gezeitenkräften die ihn bei der Umwandlung in Reibungsarbeit aufheizen.

Betrachte einen Himmelskörper mit Radius r, der um einen Planeten mit Masse M_P auf einer Bahn mit großer Halbachse a und Exzentrizität e kreist. Die Exzentrizität ist dabei für geschlossene Bahnen ein Wert mit $0 \le e < 1$, der angibt, wie stark die Bahn von einer Kreisbahn abweicht.

Die Heizleistung, die der Körper erfährt, lässt sich ausdrücken durch

$$P \approx \frac{21}{100} r^5 e^2 G^{\alpha} M_{\rm P}^{\beta} a^{\gamma}.$$

Welche Werte haben die Exponenten α , β und γ ?

A
$$\alpha = -3/2$$
, $\beta = 5/2$ und $\gamma = -15/2$.
B $\alpha = 3/2$, $\beta = 5/2$ und $\gamma = -15/2$.
C $\alpha = 3/2$, $\beta = -5/2$ und $\gamma = 15/2$.

B
$$\alpha = 3/2$$
, $\beta = 5/2$ und $\gamma = -15/2$.

C
$$\alpha = 3/2$$
, $\beta = -5/2$ und $\gamma = 15/2$.

D
$$\alpha = -3/2$$
, $\beta = 5/2$ und $\gamma = 15/2$.

Aufgabe 55 - Zwei Platten im Vakuum (MC-Aufgabe)

(2. Rd. zur IPhO 2021, Aufgabengruppe der PhysikOlympiade - Eugen Dizer)

Zwei leitfähige, parallele Platten mit Fläche A befinden sich im Abstand d im Vakuum. Aufgrund des quantenmechanischen Casimir-Effektes wirkt eine Kraft zwischen den Platten, die von der Lichtgeschwindigkeit c im Vakuum und dem reduzierten Planckschen Wirkungsquantum $\hbar = \frac{h}{2\pi}$ abhängt.

Welcher der folgenden Ausdrücke könnte einen passenden Ausdrück für die Kraft F darstellen, mit welcher die Platten zusammengedrückt werden?

A
$$F = \frac{\pi^2 \hbar c}{240 d^3} A$$

B
$$F = \frac{\pi^2 \hbar c}{240 d^3} A^2$$

$$C F = \frac{\pi^2 \hbar c}{240 d^4} A$$

D
$$F = \frac{\pi^2 \hbar c}{240 d^4} A^2$$